Math III Review Rational and Radical Equations

Simplifying Rational and Radical Equations

Ex/ Solve $2x = \sqrt{5x - 1} + 1$

Step 1: Subtract 1 from each side to isolate the radical term

$$2x - 1 = \sqrt{5x - 1}$$

Step 2: Square both sides

$$4x^2 - 4x + 1 = 5x - 1$$

Step 3: Set the right side equal to zero

$$4x^2 - 9x + 2 = 0$$

Step 4: Solve for x (factoring, quadratic formula, graphing)

$$x = \frac{1}{4}$$
 and $x = 2$

Step 5: Plug answers back into the original equation and check for extraneous solutions

$$2\left(\frac{1}{4}\right) = \sqrt{5\left(\frac{1}{4}\right) - 1} + 1$$

$$\frac{1}{2} \neq 1\frac{1}{2}$$

So
$$x = \frac{1}{4}$$
 is **not** a solution

$$2(2) = \sqrt{5(2) - 1} + 1$$

So
$$x = 2$$
 is a solution

The solution $\frac{1}{4}$ is an **extraneous solution** because is a solution to the transformed equation, not to the original equation

$$\operatorname{Ex/Solve} \frac{x}{x-1} - 1 = \frac{x}{2}$$

Step 1: Get a common denominator, in this case 2(x-1)

$$\frac{2x}{2(x-1)} - \frac{2(x-1)}{2(x-1)} = \frac{x(x-1)}{2(x-1)}$$

Step 2: Since the denominators are the same we only need to simplify the numerator

$$2x - 2(x - 1) = x(x - 1)$$

$$2x - 2x + 2 = x^2 - x$$

$$0 = x^2 - x - 2$$

Step 3: Solve for x

$$0 = (x - 2)(x + 1)$$

So
$$x = 2$$
 and $x = -1$

Step 4: Plug answers back into the original equation and check for extraneous solutions

$$\frac{2}{2-1} - 1 = \frac{2}{2}$$

$$\frac{2}{2-1} - 1 = \frac{2}{2} \qquad \qquad \frac{-1}{-1-1} - 1 = \frac{-1}{1}$$

$$1 = 1$$
 $-\frac{1}{2} \neq -1$

So x = 2 is a solution

So x = -1 is **not** a solution

The solution -1 is an extraneous solution

Examples:

1. Solve for x:
$$\frac{x+1}{5} - 2 = \frac{-4}{x}$$

A.
$$x = 4$$

B.
$$x = 5$$

C.
$$x = 4, 5$$

2. Solve for x:
$$\frac{8}{x-5} - \frac{9}{x-4} = \frac{5}{x^2 - 9x + 20}$$

3. Solve for x:
$$8 - \sqrt{x + 12} = 3$$

4. Solve for x:
$$\sqrt{x + 15} = 5 + \sqrt{x}$$