Math II\Trigonometry Review

F.TF.1, 2, 5, & 8

Trig Ratios

$$Sin\theta = rac{Opposite}{Hypotenuse}$$
 $Csc\theta = rac{Hypotenuse}{Opposite}$ $Tan\theta = rac{sin\theta}{cos\theta}$ $Cot\theta = rac{cos\theta}{sin\theta}$ $Cot\theta = rac{cos\theta}{sin\theta}$ $Cot\theta = rac{cos\theta}{sin\theta}$ $Cot\theta = rac{cos\theta}{sin\theta}$ $Cot\theta = rac{Adjacent}{Hypotenuse}$ $Csc\theta = rac{1}{sin\theta}$ $csc\theta = rac{1}{sin\theta}$ $csc\theta = rac{1}{csc\theta}$ $cos\theta = rac{1}{sec\theta}$ $cos\theta = rac{1}{sec\theta}$ $cos\theta = rac{1}{sec\theta}$ $cos\theta = rac{1}{tan\theta}$ $cos\theta = rac{1}{tan\theta}$

Trig Graphs

$$\sin^2\theta + \cos^2\theta = 1$$

The graphs of the six trigonometric functions

Amplitude - half of the distance from the maximum and minimum

Period – The horizontal length of one complete cycle

Frequency – The number of cycles the function completes in a given interval.

Midline – The horizontal line half way between the maximum and minimum.

Graph Trigonometric Functions

amplitude period
$$y = a \sin b(\theta - h) + k$$

$$phase shift phase shift period the period that the p$$

Coterminal angles – two angles in standard position that have the same terminal side.

Angles that have measures 135° and -225° are coterminal.

1 radian $\approx 57^{0}$

To change from degrees to radians – multiply the degrees by $\frac{\pi}{180}$

To change from radians to degrees – multiply the radian by $\frac{180}{\pi}$

Unit Circle

Review Problems

- 1. Which expression is equivalent to $\sin \theta \cos \theta \csc \theta$?
 - A. $\sin \theta$
- B. $\cos \theta$
- C. $\sec \theta$
- D. $\tan \theta$
- 2. Which expression is equivalent to $\cos \theta + \tan \theta \sin \theta$?
 - A. $\sec \theta$
- B. $tan \theta$
- C. $\sin \theta$
- D. $\cos \theta$
- 3. Which expression is equivalent to $\frac{\cos \theta}{1-\sin \theta} \tan \theta$?
 - A. $\sec \theta$
- B. $\sin \theta$
- C. $\cos \theta$
- D. $\csc \theta$

- 4. William put the tip of his pencil on the outer edge of a graph of the unit circle at the point (0, -1). He moved this pencil tip through an angle of $\frac{4\pi}{3}$ radians in the counterclockwise direction along the edge of the circle. At what angle of the unit circle did William's pencil tip stop?

- B. $\frac{5\pi}{6}$ C. $\frac{7\pi}{6}$ D. $\frac{5\pi}{3}$
- 5. Which of the following functions is graphed below?

A.
$$y = 3\cos\theta$$

B.
$$y = 3\sin\theta$$
 C. $y = \cos 3\theta$ D. $y = \sin 3\theta$

- 6. A Ferris wheel has a diameter of 114 feet and is 5 feet off the ground. After a person gets on the bottom car, the Ferris wheel rotates 170° counterclockwise before stopping. How high above the ground is the car when it has stopped?
 - A. 56 feet
- B. 62 feet
- C. 80 feet
- D. 118 feet
- 7. A Ferris wheel has a radius of 30 meters and is 5 meters off the ground. If a person on the Ferris wheel is 50 meters above the ground, at what degree(s) had the Ferris wheel rotated counterclockwise?
- 8. A rope is attached to the top of a 25-foot pole. The pole is perpendicular to the ground. Approximately how far from the base of the pole must the rope be attached to make a 300 angle with the ground?
 - A. 12.5 feet B. 14.4 feet
- C. 43.3 feet
- D. 50.0 feet

9. In right triangle LMN, LN = 728 cm and LM = 700 cm.

What is the **approximate** measure of $\angle NLM$?

- A 15.9°
- B 16.6°
- C 73.4°
- D 74.1°

10. In the diagram below, Triangle MPO is a right triangle and $\overline{PN}=$ 24 ft.

- What is the length of \overline{MP} ?
- How much longer is \overline{MO} than \overline{NM} ?
- How far is point O from point N?

11. Which expression is equivalent to $\frac{sin^4(\theta)-cos^4(\theta)}{sin^2(\theta)-sin^2(\theta)}$, where $sin^2(\theta) \neq cos^2(\theta)$?

A.
$$sin^2(\theta) - cos^2(\theta)$$

B.
$$cos^2(\theta) - sin^2(\theta)$$

- C. 2
- D. 1
- 12. What is the value of *x* in the triangle below?

- A. $\frac{5\sqrt{3}}{2}$ cm B. $5\sqrt{3}$ cm
- C. 10 cm
- D. 15 cm
- 13. Which angle, in standard position, is NOT coterminal with the others?
 - A. -190°
- B. -170⁰
- C. 190°
- D. 550⁰
- 14. The diameter of a circle is 8 centimeters. A central angle of the circle intercepts an arc of 12 centimeters. What is the radian measure of the angle?
 - A. $\frac{3}{2}$
- B. 3
- C. 4
- D. 8π

15. In a circle, an arc of length 8π cm is intercepted by a central angle of $\frac{2\pi}{3}$ radians. What is the radius of the circle?

- A. $\frac{3\pi}{16}$ cm B. $\frac{16\pi}{3}$ cm C. $\frac{16\pi^2}{3}$ cm D. 12 cm

16. What is the amplitude of $y = 3 \sin 4\theta$?

- A. $\frac{4}{3}$ B. 3 C. 4
- D. 2π

17. Which answer choice describes $y = -\sin 2\theta$?

- A. amplitude -1, period 4π
 - B. amplitude 1, period π
- C. amplitude 2, period $-\pi$ D. amplitude 2π , period 1

18. Which function has a period of 4π and an amplitude of 8?

- A. $y = -8\sin 8\theta$ B. $y = -8\sin \frac{1}{2}\theta$ C. $y = 8\sin 2\theta$ D. $y = 4\sin 8\theta$

19. Which function is a phase shift of $y = \sin \theta$ by 5 units to the left?

- A. $y = 5 \sin \theta$
- B. $y = \sin \theta + 5$ C. $y = \sin(\theta + 5)$ D. $y = \sin 5\theta$